This is a continuation of from a previous blog.

Cloud security isn’t true security.

Digital transformation, the cloud, and the increased popularity of DevOps, may have sped up your business practices and driven innovation. Unfortunately for network and security operations teams, the combination of these factors means a significant increase in the resource protection needed. Securing the above can become a complex, multi-vendor, multi-technology, and hybrid-cloud-environmental issue.

 

With limited resources and manual processes, it is difficult for cloud-based IT organizations to keep up with demand and document changes. While both Amazon and Azure provide too many services (Wikipedia lists these for your general Azure interest) to detail in a short security article, it suffices to say that with each cloud capability your company utilizes, the importance of securing your presence only increases. Now we’ll go into the most obvious reason security breaches are increasing on all cloud platforms: misconfiguration.

 

Cloud-provided security is a miss on misconfigs

With financial and time pressure only on the increase for CISOs, there’s a real temptation to “lift and shift,” or drop assets into a cloud without considering the security of their configuration and relationships to on-premises assets. Not the best idea.

 

We won’t mince words here: Misconfigurations are THE BIGGEST driver behind breaches today. The skyrocketing rate of poorly configured cloud infrastructure is the driver behind the major source of these breaches. According to Computing Cloud, problems arising from this one issue jumped by 424% this year, accounting for nearly 70% of compromised records over the year.

 

Computing Cloud’s 2018 Review notes that 86% of organizations cite data breaches and loss as the primary reason they hesitate to adopt the cloud. Unfortunately, a simple misconfiguration, even a failure to set a single option in a company’s cloud service, can create a major security risk. Take problems at Equifax, Cathay Pacific and others as an indicator of what’s to come when you leave the door open behind you.

 

So Retro-active!

Cloud companies are learning, but slowly, while customers are left to piece together their security after the fact. Some enterprise customers who already use Azure for example, may extend active directory (AD) controls into the cloud, so they can define “new” security controls using their existing AD controls. AWS is adapting to the new security customer in working toward enterprise-readiness in their network monitoring. They have a ways to go though. Over time both platforms have added a few resources, but neither offer a comprehensive security stack.

 

The problem is that the Cloud providers are securing their networks not your applications. They are providing insight and monitoring of suspicious activity on their network but not on your databases. This is like a security guard that monitors the streets for suspicious activity when the actual suspicious activity happens at the homes they’re breaking into, not on the streets.

 

It gets even worse though. Because it’s still up to you to properly use all the security products they are making available AND use them correctly. Meanwhile they are still learning how to properly provide them themselves. Add to that how each Cloud provider does it differently and you’re looking at a security resource problem as in you won’t find enough security resources to help you with securing all the different types of Cloud environments.

 

Now please ask yourself and your team if these add-ons, workarounds, and limited cloud-provided security insight are good enough and consider alternative solutions. Some multi-cloud security vendors, ShieldX included, give customers a single viewpoint or “pane of glass” to define security policies and control. A micro-services driven approach with custom-built orchestration for discovery and scaling makes these solutions very effective in cloud migration.

 

Other features provided by ShieldX are important when it comes to cloud security readiness: the ability to micro-segment and do DPI for “threat protection” on the traffic to detect any threats within the E/W (core) network.